
310 Java Programming for A-level Computer Science

12 Batch processing

A number of important computing applications operate by batch processing, for example: the

production of gas and electricity bills, bank statements, and even the printing of personalised

examination timetables and examination results letters for students.

The characteristics of a batch processing system are that the program and all necessary data are

prepared beforehand, then the data is processed automatically without user intervention. Typically,

a batch processing system will make use of a master file which contains data about particular

customers or products, and will combine this with a transaction file to produce the required output.

In an earlier chapter, you produced a stock control system to keep records of the quantities of

products in a shop. The records would need to be updated regularly with changes to the stock totals

if products are sold to customers, or new stocks are received from suppliers.

Stock control can be carried out by batch processing. Current details of each product are held in a

master file. During each day, the quantities of goods sold or received are recorded in a transaction

file. At the end of the day, a program can be run to update the master file and provide a list of stock

items which need to be reordered.

In this chapter we will create a complete batch processing system. The application chosen is the

production of electricity bills. As well as developing an algorithm for calculating the bills, there will

be an opportunity to practice a range of techniques covered in earlier programs, particularly: the use

of classes and objects, sorting data, and handling fixed length records.

old master file

stockID

product description

quantity in stock

re-order level

stock update

program

list of stock

items to be

re-ordered

new master file

stockID

product description

updated quantity in stock

re-order level

transaction file

stockID

quantity

sold or received?

 Chapter 12: Batch processing 311

The system to produce electricity bills will make use of two files:

 A master file. This will contain the contact information for each customer, their meter

reading at the time that the previous electricity bill was produced, and any amount of

money which they currently owe to the electricity company.

 A transaction file. This is produced by the electricity company staff who visit customers'

homes to read the meters. The file contains information to identify the customer, plus the

new meter reading.

When the meter readings have been collected, a calculation program will work through each

customer in turn:

 Information will be collected from the master file.

 The amount of electricity used by the customer will be found by comparing the previous

meter reading held in the master file with the current meter reading held in a transaction

file.

 The cost of the electricity can then be calculated, a bill printed, and the customer's record

updated with the new meter reading and amount owed.

 Updated records are stored in a new master file.

We will create a program containing three forms:

The first form will allow us to set up master records for a series of customers and store these

on disc.

The second form will allow new meter readings to be entered for customers, creating a

transaction file.

The third form will carry out the batch processing to produce and display the electricity bills,

and will update the master file with the new meter readings and amounts owed by customers.

old master file

customerID

customer name, address

previous meter reading

current amout owed

calculation

program

transaction file

customerID

new meter reading

electricity bill

electricity bill

electricity bill

electricity bill

new master file

customerID

customer name, address

updated meter reading

updated amout owed

312 Java Programming for A-level Computer Science

Begin a new project in the standard way. Close all previous projects, then set up a New Project.

Give this the name electricity, and ensure that the Create Main Class option is not selected.

Return to the NetBeans editing page. Right-click on the electricity project, and select New / JFrame

Form. Give the Class Name as electricity, and the Package as electricityPackage:

Return to the NetBeans editing screen.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Click the Source tab above the design window to open the program code. Locate the main

method. Use the + icon to open the program lines and change the parameter “Nimbus” to

“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears

and has the correct size and colour scheme. Close the program and return to the editing screen.

It will be best to create the two additional forms before beginning the programming:

Locate electricityPackage in the Project window at the top left of the screen. Right-click on

electricityPackage and select New / JFrame Form. Set the Class Name as meterReadings. Leave

the Package name as electricityPackage.

Return to the NetBeans editing screen.

 Right-click on the meterReadings form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

Repeat the process to create another form. Set the Class Name as produceBills.

 Chapter 12: Batch processing 313

Return to the NetBeans editing screen and again set the required properties:

 Right-click on the produceBills form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

We will now produce a menu system to link the three forms.

Select the electicity.java tab to open the first form. Click the Design tab to move to the form layout

view. Locate the Menu Bar component in the Palette and drag this onto the form.

Right-click on the File menu item and select Edit Text.

Change the caption to 'Customer records'. In a similar way, change the Edit menu item to 'Meter

readings'.

Right-click on an empty area of the menu bar, then select Add Menu.

314 Java Programming for A-level Computer Science

Right-click the new menu item and select Edit Text. Change the caption to Produce bills.

Repeat the procedure to create a fourth menu item 'EXIT':

Right-click each of the menu items in turn, and select the Change Variable Name option:

Change the names of the sequence of menu items to:

 optCustomers

 optReadings

 optBills

 optExit

Select the Customer records menu item. Go to the Events tab in the Properties window and locate

the mouseClicked event. Select optCustomersMouseClicked from the drop down list.

Add a line of code to the button click method.

private void optCustomersMouseClicked(java.awt.event.MouseEvent evt) {

 new electricity().setVisible(true);

}

 Chapter 12: Batch processing 315

Return to the Design screen. Create a mouseClicked method in a similar way for the Meter readings

menu option. Add a line of code to the method.

private void optReadingsMouseClicked(java.awt.event.MouseEvent evt) {

 new meterReadings().setVisible(true);

}

Again return to the Design screen. Create a mouseClicked method for the Produce bills menu option

and add a line of code to the method.

 private void optBillsMouseClicked(java.awt.event.MouseEvent evt) {

 new produceBills().setVisible(true);

 }

Run the program. Check that new windows are opened when the menu options are clicked.

Return to the NetBeans editing screen and change to the Design view. Create a mouseClick method

for the Exit menu option and add a line of code.

 private void optExitMouseClicked(java.awt.event.MouseEvent evt) {

 System.exit(0);

 }

Change to the Design view. Select the complete menu bar, then copy it. This can be done either by

right-clicking and selecting Copy from the drop down menu, or by using the short-cut keys Ctrl-C.

Move to each of the other forms and paste a copy of the menu bar. Select the form, right-click to

display a drop-down menu and select Paste, or use the short-cut keys Ctrl-V.

316 Java Programming for A-level Computer Science

Run the program. Check that new windows can be opened with the menu options, and that each

window runs the menu bar options correctly. A slight problem is that multiple copies of each of the

forms can be created. It would be neater if each window closes as the next window opens.

Return to the NetBeans editing screen and change to the Source program code view for the

electricity.java form. Add a command to the mouseClick options to close the current form when a

new form opens.

 private void optCustomersMouseClicked(java.awt.event.MouseEvent evt) {

 this.setVisible(false);

 new electricity().setVisible(true);

 }

 private void optReadingsMouseClicked(java.awt.event.MouseEvent evt) {

 this.setVisible(false);

 new meterReadings().setVisible(true);

 }

 private void optBillsMouseClicked(java.awt.event.MouseEvent evt) {

 this.setVisible(false);

 new produceBills().setVisible(true);

 }

These changes need to be applied to the menu bars of the other two forms. It is probably quickest

to delete the menu bars from the meterReadings and produceBills forms, then recopy the menu bar

from the electricity.java form.

Run the program. Check that the windows now close correctly as each new menu option is selected,

and the program ends when the Exit option is selected.

One final problem is that the whole program ends if the user clicks the cross icon at the top of a

form. This should be disabled. Go to the Design view for electricity.java and click to select the

blank area of form. In the Properties window, set the defaultCloseOperation property to

DO_NOTHING.

Disable the close icons for the other two forms in a similar way.

Run the program. Check that it is only possible to close the program by means of the Exit menu

option.

 Chapter 12: Batch processing 317

We can now begin work on the input screen for customer records. For simplicity, we will only store

five pieces of information:

 CustomerID three digit integer number

 Customer surname string field of 24 characters

 Town string field of 24 characters

 Previous meter reading five digit integer number

 Amount owing decimal (real) number

Go to the Design view for the electricity.java form. Add a Table component. Right-click on the table

and change the name to tblCustomers.

Go to the Properties window and locate the model property. Click in the right column to open the

table editing window. Set Rows to 20 and Columns to 5. Give the Titles and Data Types as shown

below:

 CustomerID Integer

 Customer Name String

 Town String

 Previous reading Long

 Amount owing Double

We will use long as the data type for the meter readings, as it allows much larger numbers to be

stored than a normal integer.

318 Java Programming for A-level Computer Science

Click OK to return to the Design view and check that the table headings are shown correctly. Add a

button below the table, with the caption 'Save'. Rename the button as btnSave.

Run the program. Check that errors can be detected when data is entered in the cells of the table.

The CustomerID and Previous reading columns will only accept integer numbers, and the Amount

owing column will only accept real numbers. If data is entered in an incorrect format, a red outline

appears around the cell, and the error must be corrected before further data can be entered.

Close the program by clicking the EXIT menu option, and return to the NetBeans editing screen.

The next step is to save the records from the Customer table to create the master file for the batch

processing system.

For this project, we use an object oriented approach. Most large projects are now programmed

using classes of objects, as this makes the software more modular in its structure, easier to maintain,

and reduces the likelihood of programming errors.

 Chapter 12: Batch processing 319

The project will require two classes of objects:

 Customer objects, which will be used to create the master file,

 Meter reading objects, which will be used to create the transaction file.

It is an important principle of object oriented programming that the user interface has no direct

communication with files stored on disc. This reduces the risk of files being corrupted, or records

being accidentally altered or deleted.

User interface Objects Data files

All file operations are carried within the object classes, which will contain methods to save and load

objects to and from the disc files.

The user interface can display the objects held in the computer memory, and can be used to input

data to create additional objects.

We can produce a class diagram to illustrate the requirements for the Customer class. Properties

are shown in the box below the object name, and methods in the bottom box. A minus symbol

indicates private properties which can only be accessed by methods belonging to this object class.

A plus symbol indicates properties and methods which are public and can be accessed from other

parts of the program.

Customer

Meter

reading

 Master file

 Customer A
Customer B
Customer C

Transaction file

Meter reading A
Meter reading B
Meter reading C

 Customer

- customerID integer

- customerName string

- town string

- oldReading long

- amountOwing double

+ customerObject array of Customer

+ customerCount integer

+ Customer()

+ saveCustomers()

+ loadCustomers()

+ sortCustomers()

+ getCustomerDetails()

320 Java Programming for A-level Computer Science

Apart from the five private object properties, we will also use

 a customerObject array to record the memory locations of Customer objects when they are

created,

 an integer variable customerCount to record the number of Customer objects which have

been created.

The Customer class will require methods to carry out various tasks:

 Customer() is the constructor method used to create objects,

 saveCustomers() and loadCustomers() will copy the Customer objects to and from the disc

file,

 sortCustomers() will sort the Customer objects into order of CustomerID number.

 getCustomerDetails() will allow the program to access the data in the Customer objects, so

that it can be displayed on screen or used in calculating customer bills.

We will now set up the Customer class. Locate electricityPackage in the Project window at the top

left of the screen. Right-click on electricityPackage and select New / Java Class. Set the Class Name

as Customer. Leave the Package name as electricityPackage.

The Customer.java class file will open. Begin by adding the properties specified in the class

diagram. Notice that customerCount and Customer[] are marked as static, as only one copy of

these variables will exist for the whole class. This is in contrast to the properties relating to

individual customers, such as customerName and town, which are created multiple times as each

new Customer object is added.

package electricityPackage;

public class Customer {

 private int customerID;

 private String customerName;

 private String town;

 private long oldReading;

 private double owing;

 public static int customerCount=0;

 public static Customer[] customerObject=new Customer[20];

}

 Chapter 12: Batch processing 321

Add a filename for the master file which will store the Customer objects. We can then produce a

Customer() constructor method . Please note that the header:

 public Customer(….)

should be entered as a single line of code without a line break.

 public static int customerCount=0;

 public static Customer[] customerObject=new Customer[20];

 static String filename = "master.dat";

 public Customer(int tCustomerID, String tCustomerName, String tTown,

 long tOldReading, double tOwing)

 {

 customerID = tCustomerID;

 customerName = tCustomerName;

 town=tTown;

 oldReading=tOldReading;

 owing=tOwing;

 }

}

Return to the electricity.java form. Select the Source tab to open the program code view. Go to the

start of the program and add two Java modules which will be needed for editing the table, and to

display error messages.

package electricityPackage;

import javax.swing.JOptionPane;

import javax.swing.table.TableCellEditor;

public class electricity extends javax.swing.JFrame {

Change now to the Design view. Double click the 'Save' button below the table to create a button

click method.

We will set up a makeCustomerObjects() method to read the customer data from the table and

create a set of Customer objects. Call this method from the 'Save' button click method.

 private void btnSaveActionPerformed(java.awt.event.ActionEvent evt) {

 makeCustomerObjects();

 }

 private void makeCustomerObjects()

 {

 }

322 Java Programming for A-level Computer Science

We will begin the makeCustomerObjects() method with definitions for the variables which will be

required, then add lines of code to stop the table editor so that all the data in the table is available

for processing.

 private void btnSaveActionPerformed(java.awt.event.ActionEvent evt) {

 makeCustomerObjects();

 }

 private void makeCustomerObjects()
 {

 int customerCount=0;

 Integer customerID;

 String customerName;

 String town;

 Long oldReading;

 Double owing;

 TableCellEditor editor = tblCustomers.getCellEditor();

 if (editor != null)

 {

 editor.stopCellEditing();

 }

 }

Set up a TRY … CATCH block to detect errors. Inside the TRY block, we will use a loop to check each

of the twenty rows of the table, to see whether a customer record has been entered on that line.

The program will know that a record is present if data has been entered in the customerID cell, so

this cell value is not null. Note that the line:

 JOptionPane.showMessageDialog(...)

should be entered as a single line of code without a line break.

 if (editor != null)

 {

 editor.stopCellEditing();

 }

 try

 {

 for (int i=0; i<20; i++)

 {

 if (!(tblCustomers.getModel().getValueAt(i,0)==null))

 {

 }

 }

 }

 catch(NullPointerException e)

 {

 JOptionPane.showMessageDialog(electricity.this,

 "Not all the required data has been entered");

 }

 }

 Chapter 12: Batch processing 323

We will now add lines of code to the loop to collect the customer data from the table row, and use

this to create a Customer object.

Tables in Java NetBeans return numbers in special formats written as Integer, Long and Double,

rather than the number formats int, long and double which we normally use. To access the actual

number values, it is necessary to add the functions intValue(), longValue() or doubleValue() to the

variable names, for example: customerID.intValue().

Please note that the command:

 Customer.customerObject[customerCount] = new Customer (...);

and lines beginning:

 JOptionPane.showMessageDialog(…

should be entered as a single line of code without line breaks.

 try

 {

 for (int i=0; i<20; i++)

 {

 if (!(tblCustomers.getModel().getValueAt(i,0)==null))

 {

 customerID = (Integer) tblCustomers.getModel().getValueAt(i,0);

 customerName=(String) tblCustomers.getModel().getValueAt(i,1);

 town=(String) tblCustomers.getModel().getValueAt(i,2);

 oldReading=(Long) tblCustomers.getModel().getValueAt(i,3);

 owing=(Double) tblCustomers.getModel().getValueAt(i,4);

 if (customerID<100 || customerID>999)

 {

 JOptionPane.showMessageDialog(electricity.this,

 "CustomerID must be three digits");

 tblCustomers.getModel().setValueAt("",i,0);

 }

 else

 {

 if (oldReading<10000 || oldReading>99999)

 {

 JOptionPane.showMessageDialog(electricity.this,

 "Previous reading must be five digits");

 tblCustomers.getModel().setValueAt("",i,3);

 }

 else

 {

 Customer.customerObject[customerCount] =

 new Customer(customerID.intValue(), customerName,

 town, oldReading.longValue(), owing.doubleValue());

 customerCount++;

 }

 }

 }

 }

 Customer.customerCount=customerCount;

 }

 catch(NullPointerException e)

324 Java Programming for A-level Computer Science

Run the program. Check the error trapping. Enter partial data for a customer, then click the 'Save'

button. An error message should appear, to indicate that not all the required data has been entered.

The CustomerID should be three digits in length. Enter a CustomerID number which is less or more

than three digits, and check that an error message is displayed.

The Previous reading should be five digits in length. Enter a Previous reading which is less or more than

five digits, and check that an error message is displayed.

A complete record with correct data in each field should be accepted without an error message.

 Chapter 12: Batch processing 325

Use the Exit menu option to return to the NetBeans editing page.

We now need to carry out the opposite task of reading the set of Customer objects and displaying

them in the table. Begin by going to the Customer.java class file and adding methods to make the

data values available.

 public Customer(int tCustomerID, String tCustomerName, String tTown,

 long tOldReading, double tOwing)

 {

 customerID = tCustomerID;

 customerName = tCustomerName;

 town=tTown;

 oldReading=tOldReading;

 owing=tOwing;

 }

 public int getCustomerID()

 {

 return customerID;

 }

 public String getCustomerName()

 {

 return customerName;

 }

 public String getTown()

 {

 return town;

 }

 public long getOldReading()

 {

 return oldReading;

 }

 public double getOwing()

 {

 return owing;

 }

}

 Return to the electricity.java program code page. Immediately after the makeCustomerObjects()

method, add a displayCustomers() method. Include the variables which will be needed.

 private void displayCustomers()

 {

 int customerID;

 String customerName;

 String town;

 long oldReading;

 double owing;

 }

326 Java Programming for A-level Computer Science

Add loops to clear the table by resetting each of the cell values to null.

 String town;

 long oldReading;

 double owing;

 for (int i=0; i<20; i++)

 {

 for (int j=0; j<5; j++)

 {

 tblCustomers.getModel().setValueAt(null,i,j);

 }

 }

 }

We will now use a loop to access each of the Customer objects and display the field values in the

table.

 for (int i=0; i<20; i++)

 {

 for (int j=0; j<5; j++)

 {

 tblCustomers.getModel().setValueAt(null,i,j);

 }

 }

 if (Customer.customerCount>0)

 {

 for (int i=0; i<Customer.customerCount; i++)

 {

 customerID=Customer.customerObject[i].getCustomerID();

 tblCustomers.getModel().setValueAt(customerID,i,0);

 customerName = Customer.customerObject[i].getCustomerName();

 tblCustomers.getModel().setValueAt(customerName,i,1);

 town = Customer.customerObject[i].getTown();

 tblCustomers.getModel().setValueAt(town,i,2);

 oldReading = Customer.customerObject[i].getOldReading();

 tblCustomers.getModel().setValueAt(oldReading,i,3);

 owing = Customer.customerObject[i].getOwing();

 tblCustomers.getModel().setValueAt(owing,i,4);

 }

 }

 }

 Chapter 12: Batch processing 327

We will call the displayCustomers() method when the form opens. Go to the start of the program

listing and locate the electricity() method, then add the line of code.

public class electricity extends javax.swing.JFrame {

 public electricity() {

 initComponents();

 displayCustomers();

 }

Run the program. Enter a customer record, then click the 'Save' button. Use the menu options to

move to different pages, then return to the Customer records page. A new form will open. Check

that the record entered earlier is correctly displayed.

Use the Exit menu option to return to the NetBeans editing screen.

As we will see later in this chapter, it is necessary for both the master records and the transaction

records to be sorted into order of customerID before the electricity bills are produced. We will now

set up a method to sort the Customer objects.

Go to the Customer class file and create a sort() method below the getCustomerID() method. Add

a line to produce an empty Customer object called temp which we will use in the sort procedure.

 public int getCustomerID()
 {

 return customerID;

 }

 public static void sort()

 {

 Customer temp=new Customer(0,"","",0,0);

 }

328 Java Programming for A-level Computer Science

We will sort the Customer objects using a bubble sort. We can decide whether any two objects

need to be swapped by comparing the customerID values. The objects should be sorted into

ascending order of customerID number.

Complete objects, including all of their properties, can be copied in a single operation. The

customer objects are held in the customerObject[] array. If we find that the objects at position [i]

and position [i+1] need to be swapped, this can be done using a triangular exchange via the temp

object we have created:

 temp = customerObject[i];

 customerObject[i] = customerObject[i+1];

 customerObject[i+1] = temp;

Add lines to the sort() method which will obtain the customerID values for each pair of objects,

compare the values, and carry out the triangular exchange if necessary. The Boolean variable 'swap'

will indicate when the sorting has been completed.

 public static void sort()

 {

 Customer temp=new Customer(0,"","",0,0);

 Boolean swap=true;

 while (swap==true)

 {

 swap=false;

 for (int i=0; i<customerCount-1;i++)

 {

 int customerID1 = customerObject[i].customerID;

 int customerID2 = customerObject[i+1].customerID;

 if (customerID1>customerID2)

 {

 swap=true;

 temp=customerObject[i];

 customerObject[i]=customerObject[i+1];

 customerObject[i+1]=temp;

 }

 }

 }

 }

customerObject[i] customerObject[i+1]

 temp

1 3

2

 Chapter 12: Batch processing 329

Return to the electricity.java page. Use the Design tab to move to the form layout view. Double

click the 'Save' button to open the button click method. This currently contains the line of code to

create Customer objects from the table data. Add commands to sort the Customer objects, and

redisplay the sorted data in the table.

 private void btnSaveActionPerformed(java.awt.event.ActionEvent evt) {

 makeCustomerObjects();

 Customer.sort();

 displayCustomers();

 }

Run the program. Enter several customer records, then click the 'Save' button. The records should

be sorted into order of customerID, then redisplayed in the table.

Close the program using the Exit menu option. Return to the Customer class.

We will add a method to save the set of Customer objects to a disc file. Begin by adding Java

modules at the start of the class, which will be needed for the file operations.

package electricityPackage;

import java.io.File;

import java.io.IOException;

import java.io.RandomAccessFile;

public class Customer {

 private int customerID;

 private String customerName;

330 Java Programming for A-level Computer Science

Insert the saveCustomers() method below the sort() method. We will aAdd definitions for variables

which will be required. We will then delete any existing master.dat file, ready to replace it a new

file.

 public static void saveCustomers()

 {

 String fCustomerID;

 String fCustomerName;

 String fTown;

 String fOldReading;

 String fOwing;

 File oldfile = new File(filename);

 oldfile.delete();

 }

We will use fixed length records for the master file. Set up a TRY … CATCH structure to handle any

file errors, then add a loop to save each of the customer records.

 File oldfile = new File(filename);

 oldfile.delete();

 try (RandomAccessFile file = new RandomAccessFile(filename, "rw"))

 {

 for (int i=0; i<customerCount; i++)

 {

 }

 file.close();

 }

 catch(IOException e)

 {

 }

 }

It is possible to store the number fields of each record directly in integer, long or double format.

Using binary number formats can save a small amount of file space, but has the disadvantage that

the file is no longer readable if displayed in a text editing application such as Notepad:

CNGgm?/kvd34 kYVkyorN1h /]uTXRhesQT ^&gSJ|\\o4JubxF nihO6v0E8x

Scientists, engineers and other users of large computing applications generally prefer numbers to be

converted to text format for storing in data files. The numbers are then displayed in a normal

readable form:

 3589 276922 38.45 178.50

This makes it easier to directly check the contents of the data file and identify any errors. We will

use this approach in the current program.

 Chapter 12: Batch processing 331

Each customer record has five fields. We can set the lengths in bytes for each field, and add an 'end

of record' marker.

 CustomerID is a three digit number, so can be represented as three text characters.

 Previous reading is a five digit number, so can be represented as five text characters.

 Amount owing is a number with two decimal places, representing pounds and pence. This

can be stored within an eight character text field.

 The lengths of the Customer name and Town fields are each set as 24 characters.

CustomerID Customer Name Town Previous reading Amount owing ***

3 bytes 24 bytes 24 bytes 5 bytes 8 bytes 3 bytes

This gives a total record length of 67 bytes.

Add lines of code to the loop which will:

 Obtain the data for each field from the current Customer object.

 Where necessary, convert number fields into text format.

 Set the correct field lengths, adding blank spaces if necessary.

 Save the data into the file on disc.

 try (RandomAccessFile file = new RandomAccessFile(filename, "rw"))

 {

 for (int i=0; i<customerCount; i++)

 {

 fCustomerID=String.valueOf(customerObject[i].customerID);

 fCustomerID=String.format("%-3s",fCustomerID);

 file.write(fCustomerID.getBytes());

 fCustomerName=customerObject[i].customerName;

 fCustomerName=String.format("%-24s",fCustomerName);

 file.write(fCustomerName.getBytes());

 fTown=customerObject[i].town;

 fTown=String.format("%-24s",fTown);

 file.write(fTown.getBytes());

 fOldReading=String.valueOf(customerObject[i].oldReading);

 fOldReading=String.format("%-5s",fOldReading);

 file.write(fOldReading.getBytes());

 fOwing=String.valueOf(customerObject[i].owing);

 fOwing=String.format("%-8s",fOwing);

 file.write(fOwing.getBytes());

 file.write("***".getBytes());

 }

 file.close();

 }

 catch(IOException e)

 {

 }

 }

332 Java Programming for A-level Computer Science

Move to the electricity.java page and open the Source code view. Locate the btnSave() method,

and add a line of code to call saveCustomers().

private void btnSaveActionPerformed(java.awt.event.ActionEvent evt) {

 makeCustomerObjects();

 Customer.sort();

 displayCustomers();

 Customer.saveCustomers();

 }

Run the program. Enter some test data, ensuring that CustomerID values are 3 digit numbers and

Previous reading values are 5 digit numbers.

Use Windows Explorer to locate the master.dat file in the electricity program folder. Open

master.dat in a text editing application such as Notepad, and check that the test data has been

stored correctly.

Close the program by selecting the Exit menu option. Click the tab at the top of the NetBeans screen

to return to the Customer.java class.

We will now add a method to re-load the customer records from the master.dat file. Create a

loadCustomers() method below saveCustomers(). Add definitions for the variables which will be

required.

 public static void loadCustomers()

 {

 int position;

 String fCustomerID;

 String fCustomerName;

 String fTown;

 String fOldReading;

 String fOwing;

 }

 Chapter 12: Batch processing 333

Add a TRY … CATCH structure to handle any file errors, then begin a loop to load each customer

record. Each record has a fixed length of 67 bytes, the number of records can be calculated by

dividing the total file size by 67.

 String fOldReading;

 String fOwing;

 try

 {

 RandomAccessFile file = new RandomAccessFile(filename, "r");

 customerCount=(int) file.length()/67;

 for (int i=0; i<customerCount; i++)

 {

 }

 file.close();

 }

 catch(IOException e)

 {

 }

 }

We calculate the file position for each record using:

 [file location] = [record sequence number] * [record length]

A block of 67 bytes is loaded at this point, split into the separate fields, then the data is used to

create a Customer object. Add the lines of code below, remembering that the command:

 customerObject[i] = new Customer(…)

should be entered as a single line of code without line breaks.

RandomAccessFile file = new RandomAccessFile(filename, "r");

customerCount=(int) file.length()/67;

 for (int i=0; i<customerCount; i++)

 {

 position=i*67;

 file.seek(position);

 byte[] bytes = new byte[67];

 file.read(bytes);

 String s=new String(bytes);

 fCustomerID=s.substring(0,3); s=s.substring(3);

 fCustomerName=s.substring(0,24).trim(); s=s.substring(24);

 fTown=s.substring(0,24).trim(); s=s.substring(24);

 fOldReading=s.substring(0,5); s=s.substring(5);

 fOwing=s.substring(0,8);

 customerObject[i] = new Customer(Integer.parseInt(fCustomerID), fCustomerName,

 fTown, Long.parseLong(fOldReading), Double.parseDouble(fOwing));

 }

 file.close();

334 Java Programming for A-level Computer Science

Return to the electricity.java Source code page. Locate the electricity() method and a line to call

the loadCustomers() method.

 public electricity() {

 initComponents();

 Customer.loadCustomers();

 displayCustomers();

 }

Run the program. Customer records should now be immediately displayed in the table.

Close the program with the Exit menu option. Select the meterReadings.java page and click the

Design tab if necessary to open the form layout view.

Add a table to the form and rename this as tblReadings.

Go to the Properties window and locate the model property. Click in the right column to open the

table editing window. Set Rows to 0 and Columns to 2. Give the Titles and Data Types as shown

below:

 Customer String

 New meter reading Long

Remove the ticks from the Editable column as shown, then click the OK button.

 Chapter 12: Batch processing 335

Run the program and select the Meter readings menu option. Check that an empty table is

displayed with the correct headings.

Close the program window to return to the form layout screen. Add buttons below the table with

the captions 'Delete record' and 'Save transaction file'. Give the buttons the names btnDelete and

btnSave.

Add a Panel to the form. Set the border property to BevelBorder. Right-click the panel and select

Set Layout / Absolute Layout.

Add components to the panel:

 A Combo Box. Rename this as cmbCustomers.

 A label with the caption 'Previous meter reading'. Add a text field alongside, with the name

txtOldReading. Delete the text which is shown in the box. Locate the enabled property for

the text box and remove the tick.

 A label with the caption 'New meter reading'. Add a text field alongside, with the name

txtNewReading. Delete the text which is shown in the box.

 A button with the caption 'Enter meter reading'. Rename the button as btnEnter.

336 Java Programming for A-level Computer Science

When meter readings are collected from customers' homes, the data will be entered into the table.

It will be convenient to identify the customer by their ID number, followed by their name, for

example:

 183 Smith

The new meter reading will be stored as a long integer to allow for large five digit numbers, for

example:

 38221

Using an object oriented approach, we will create Reading objects to handle this data. The required

properties and methods can be shown in a class diagram.

Before carrying out further work on the input form, we will create the Reading class.

Locate electricityPackage in the Project window at the top left of the screen. Right-click on

electricityPackage and select New / Java Class. Set the Class Name as Reading. Leave the Package

name as electricityPackage.

The Reading.java class file will open.

We will begin by adding Java modules which will be required for file handling.

We will then define the properties specified in the class diagram. Notice that readingCount and

Reading[] are marked as static, as only one copy of these variables will exist for the whole class.

This is in contrast to the properties of individual objects, customer and newReading, which are

created multiple times as each new Reading object is added.

 Reading

- customer string

- newReading long

+ readingObject array of Reading

+ readingCount integer

+ Reading()

+ saveReadings()

+ loadReadings()

+ sortReadings()

+ getReadingDetails()

 Chapter 12: Batch processing 337

The file name 'transaction.dat' will be given to the file which will store the meter readings.

Finally, add the Reading() constructor method which will the create objects when the program runs.

package electricityPackage;

import java.io.File;

import java.io.IOException;

import java.io.RandomAccessFile;

public class Reading {

 private String customer;

 private long newReading;

 public static int readingCount=0;

 public static Reading[] readingObject=new Reading[50];

 static String filename = "transaction.dat";

 public Reading(String tCustomer, long tNewReading)

 {

 customer = tCustomer;

 newReading=tNewReading;

 }

 }

Return to the meterReadings.java page and select the Source program code view.

Go to the start of the program listing and add Java modules which will be needed by the Combo box

and Table components.

package electricityPackage;

import javax.swing.DefaultComboBoxModel;

import javax.swing.table.DefaultTableModel;

import javax.swing.table.TableCellEditor;

public class meterReadings extends javax.swing.JFrame {

When the meterReadings form opens, the program can produce a drop down list of all customer ID

numbers and customer names in the Combo Box.

Locate the meterReadings() method and add a line to call a new method called loadCustomers().

 public meterReadings() {

 initComponents();

 loadCustomers();

 }

338 Java Programming for A-level Computer Science

Add the loadCustomers() method immediately below. This begins by clearing the Combo Box, then

uses a loop to add an entry for each customer.

 public meterReadings() {

 initComponents();

 loadCustomers();

 }

 private void loadCustomers()

 {

 String s;

 int customerID;

 DefaultComboBoxModel model = (DefaultComboBoxModel)cmbCustomers.getModel();

 model.removeAllElements();

 for (int i=0;i<Customer.customerCount; i++)

 {

 customerID=Customer.customerObject[i].getCustomerID();

 s= Integer.toString(customerID);

 s+=" "+Customer.customerObject[i].getCustomerName();

 model.addElement(s.trim());

 }

 }

Run the program. Select the Meter readings menu option, then check that the customer ID

numbers and customer names are shown correctly in the drop down list.

Close the program and return to the meterReadings.java page. Use the Design tab to move to the

form layout view.

When the user selects a customer from the drop down list, the program should display the previous

meter reading in a text field.

Double click on the Combo Box to produce a method which will operate when a list item is selected.

 Chapter 12: Batch processing 339

Add code which checks the index position of the selected item in the drop down list, then obtains

the meter reading from the corresponding Customer object.

private void cmbCustomersActionPerformed(java.awt.event.ActionEvent evt) {

 int n=cmbCustomers.getSelectedIndex();

 if (n>=0)

 {

 String s=Long.toString(Customer.customerObject[n].getOldReading());

 txtOldReading.setText(s);

 txtNewReading.setText("");

 }

 }

Run the program and go to the Meter readings page. Check that previous meter readings are

displayed correctly when customers are selected from the drop down list.

Close the program and return to the meterReadings.java screen. Use the Design tab to change back

to the form layout view.

We can now transfer data from the panel to the table. Double click the 'Enter meter reading' button

to create a method. We will add lines of code which will:

 Collect the customer ID and name from the Combo Box.

 Collect the new meter reading from the text field.

 Create a row of data from these items.

 Insert the row of data into the table.

 private void btnEnterActionPerformed(java.awt.event.ActionEvent evt) {

 String customer = (String) cmbCustomers.getSelectedItem();

 long newReading= Long.valueOf(txtNewReading.getText());

 Object[] row = { customer, newReading};

 DefaultTableModel model = (DefaultTableModel)tblReadings.getModel();

 model.addRow(row);

 }

340 Java Programming for A-level Computer Science

Run the program and go to the Meter readings page. Select a series of customers, entering a new

meter reading for each customer and then clicking the 'Enter meter reading' button. Check that the

data is transferred to the table correctly.

Close the program and return to the meterReadings.java screen. Use the Design tab to change back

to the form layout view.

The table has been set to read-only, with all data entry taking place on the panel. We should,

therefore, provide a 'Delete record' facility, in case the user spots an error after data has already

been transferred the table. Double click the 'Delete record' button to create a method.

Add code to the method to detect which row of the table is currently selected, then delete that row.

 private void btnDeleteActionPerformed(java.awt.event.ActionEvent evt) {

 int row=tblReadings.getSelectedRow();

 DefaultTableModel model = (DefaultTableModel)tblReadings.getModel();

 model.removeRow(row);

 }

 Chapter 12: Batch processing 341

Run the program and go to the Meter readings page. Enter several rows of data into the table. Click

the mouse on a row of the table, then click the ''Delete record' button. Check that the row is

deleted correctly.

Close the program and return to the meterReadings.java screen. We can now work on a method

required to create Reading objects from the table data.

Add makeReadingObjects() below the meterReadings() method. Include definitions for the

variables which will be required.

 public meterReadings() {

 initComponents();

 loadCustomers();

 }

 private void makeReadingObjects()

 {

 String customer;

 Long newReading;
 }

342 Java Programming for A-level Computer Science

The structure of the makeReadingObjects() method will be very similar to the method we used to

create Customer objects. Add the lines of code below which will:

 Stop the table editor, so that all the data values are available for processing.

 Find the number of rows of data entered in the table, then loop for each row.

 Collect the customer and meter reading data, then use these to create a Reading object.

 Update the readingCount variable to indicate how many objects have been created.

 private void makeReadingObjects()

 {

 String customer;

 Long newReading;

 TableCellEditor editor = tblReadings.getCellEditor();

 if (editor != null)

 {

 editor.stopCellEditing();

 }

 int n=tblReadings.getRowCount();

 for (int i=0; i<n; i++)

 {

 customer=(String) tblReadings.getModel().getValueAt(i,0);

 newReading=(Long) tblReadings.getModel().getValueAt(i,1);

 Reading.readingObject[i] = new Reading(customer, newReading.longValue());

 }

 Reading.readingCount=n;

 }

Once the Reading objects have been created, they should be sorted into order of customerID, ready

to produce the electricity bills by a batch process. We will carry out the sorting in the Reading class.

Move to the Reading.java page. Insert a sort() method immediately below the Reading()

constructor method. Create an empty temp object for use in the triangular exchange, and start the

loops for the bubble sort procedure.

 public Reading(String tCustomer, long tNewReading)

 {

 customer = tCustomer;

 newReading=tNewReading;

 }

 public static void sort()

 {

 Reading temp=new Reading("",0);

 Boolean swap=true;

 while (swap==true)

 {

 swap=false;

 for (int i=0; i<readingCount-1;i++)

 {

 }

 }

 }

 Chapter 12: Batch processing 343

We can now add code to complete the sorting:

 The sort procedure collects the customer entries from the two Reading objects which are

being compared, then extracts the customerID numbers using the substring() command.

 If the customerID numbers are in the wrong order, the objects are swapped in the

readingObject[] array by means of a traingular exchange using the temp object.

 while (swap==true)

 {

 swap=false;

 for (int i=0; i<readingCount-1;i++)

 {

 String customer1 =readingObject[i].customer.toString();

 int customerID1=Integer.valueOf(customer1.substring(0,3));

 String customer2 =readingObject[i+1].customer.toString();

 int customerID2=Integer.valueOf(customer2.substring(0,3));

 if (customerID1>customerID2)

 {

 swap=true;

 temp=readingObject[i];

 readingObject[i]=readingObject[i+1];

 readingObject[i+1]=temp;

 }

 }

 }

Now that we have sorted the objects, the list of readings can be redisplayed in the table in the

correct order of customerID numbers. Return to the meterReadings.java screen to produce a

method to do this.

Add a displayReadings() method below the makeReadingObjects() method. This begins by

defining the variables which will be required, then clears the table by setting the number of rows to

zero. A loop then accesses each of the Reading objects, makes a row of data from the customer and

newReading properties, then adds this to the table.

 private void displayReadings()

 {

 String customer;

 long newReading;

 DefaultTableModel model = (DefaultTableModel)tblReadings.getModel();

 model.setRowCount(0);

 if (Reading.readingCount>0)

 {

 for (int i=0; i<Reading.readingCount; i++)

 {

 customer = Reading.readingObject[i].getCustomer();

 newReading= Reading.readingObject[i].getNewReading();

 Object[] row = { customer, newReading};

 model.addRow(row);

 }

 }

 }

344 Java Programming for A-level Computer Science

We will need to add methods to the Reading class file to make the customer and newReading data

values available. Use the tab above the editing screen to move to Reading.java, then add methods

below the Reading() constructor method.

 public Reading(String tCustomer, long tNewReading)

 {

 customer = tCustomer;

 newReading=tNewReading;

 }

 public String getCustomer()

 {

 return customer;
 }

 public long getNewReading()

 {

 return newReading;

 }

Return to the meterReadings.java page and use the Design tab to change to the form layout view.

Double click the 'Save transaction file' button to create a method. Add lines of code to call the

sequence of methods to create Reading objects, sort the objects into order of customerID numbers,

then redisplay the sorted records in the table.

 private void btnSaveActionPerformed(java.awt.event.ActionEvent evt) {

 makeReadingObjects();

 Reading.sort();

 displayReadings();

 }

Run the program. Go to the Meter readings page, then enter a series of records in random order of

customerID numbers. Click the 'Save transaction file' button and check that the records are

redisplayed correctly in sorted order.

 Chapter 12: Batch processing 345

Close the program and return to the NetBeans editing screen. Use the tab to open the Reading.java

class. We will complete the class by adding methods to save the Reading objects on disc as fixed

length records, and reload the records.

Insert a saveReadings() method below the sort() method. Add lines of code to define the variables

which will be needed, and delete any previous transaction.dat file, ready to save the new file.

 public static void saveReadings()

 {

 String fCustomer;

 String fNewReading;

 File oldfile = new File(filename);

 oldfile.delete();

 }

Set up a TRY … CATCH structure to handle file errors, then begin a loop to save each of the Reading

objects to disc.

 File oldfile = new File(filename);

 oldfile.delete();

 try (RandomAccessFile file = new RandomAccessFile(filename, "rw"))

 {

 for (int i=0; i<readingCount; i++)

 {

 }

 file.close();

 }

 catch(IOException e)

 {

 }

 }

Each Reading record has two fields. We can set the lengths in bytes for each field, and add an 'end

of record' marker.

 Customer is a three digit number, followed by a Customer name field which was set to

24 characters. The complete field can therefore be stored in 27 characters.

 New reading is a five digit number, so can be represented as five text characters.

This gives a total record length of 35 bytes.

Customer New reading ***

24 bytes 5 bytes 3 bytes

346 Java Programming for A-level Computer Science

We will add lines of code to the loop which will:

 Obtain the data for each field from the current Reading object.

 Convert the newReading number field into text format.

 Set the correct field lengths, adding blank spaces if necessary.

 Save the data into the file on disc.

 for (int i=0; i<readingCount; i++)

 {

 fCustomer=readingObject[i].customer;

 fCustomer=String.format("%-27s",fCustomer);

 file.write(fCustomer.getBytes());

 fNewReading=String.valueOf(readingObject[i].newReading);

 fNewReading=String.format("%-5s",fNewReading);

 file.write(fNewReading.getBytes());

 file.write("***".getBytes());

 }

 file.close();

This completes the saveReadings() method. We will finally add a method to reload the records

from disc.

Below the saveReadings() method, insert a loadReadings() method. Add the program code below

to create a TRY…CATCH structure to handle file errors, load the records and create Reading objects.

 public static void loadReadings()

 {

 int position;

 String tCustomer;

 String tNewReading;

 try

 {

 RandomAccessFile file = new RandomAccessFile(filename, "r");

 readingCount=(int) file.length()/35;

 for (int i=0; i<readingCount; i++)

 {

 position=i*35;

 file.seek(position);

 byte[] bytes = new byte[35];

 file.read(bytes);

 String s=new String(bytes);

 tCustomer=s.substring(0,27); s=s.substring(27);

 tNewReading=s.substring(0,5).trim();

 readingObject[i]=new Reading(tCustomer,Long.parseLong(tNewReading));

 }

 file.close();

 }

 catch(IOException e)

 {

 }

 }

 Chapter 12: Batch processing 347

The program carries out a series of tasks in this method:

 It opens the transaction.dat file.

 It determine the number of records in the file by dividing the file length by the record size of

35 byte.

 It runs a loop, moving the file pointer to the correct position to input each record.

 It divides the fixed length record into the customer and newReading fields, then uses these

to create a Reading object.

 It finally closes the file when all the records have been loaded.

Return to the meterReadings.java page. Locate the btnSave() method and add a line of code to call

the saveReadings() method.

 private void btnSaveActionPerformed(java.awt.event.ActionEvent evt) {

 makeReadingObjects();

 Reading.sort();

 displayReadings();

 Reading.saveReadings();

 }

Run the program and go to the Meter readings page and enter a series of records. Electricity usage

is measured in units of kilowatt hours. A typical usage for a household during the 3-month quarter

for which a bill is produced would be 1,000 kWh.

Click the 'Save transaction file' button. Check that the records now appear in the table in sorted

order of customerID numbers.

Use Windows Explorer to locate the transaction.dat file in the electricity project folder. Open

transaction.dat in a text editor application such as Notepad. Check that the records have been

stored correctly.

348 Java Programming for A-level Computer Science

Close the program and return to the meterReadings.java page. We will now test the method for

reloading transaction data.

Locate the meterReadings() method near the start of the program listing, then add lines of code to

call the loadReadings() and displayReadings() methods.

 public meterReadings() {

 initComponents();

 loadCustomers();

 Reading.loadReadings();

 displayReadings();

 }

Run the program. The records should appear in the table immediately when the Meter readings

option is selected.

Close the program and return to the NetBeans editing screen. Select the produceBills.java page.

We will now produce the batch processing procedures to calculate and display the bills for electricity

usage, then update the master file with the new meter readings and amounts owed by customers.

Begin by adding components to the form:

 A List with the name lstOutput.

 A button with the caption 'Produce bills and update master file'. Rename the button as

btnPrintBills.

 Chapter 12: Batch processing 349

Double click the button to create a method which will produce the electricity bills.

We will begin by setting up constants for the cost of electricity. We will assume that customers pay:

 14.1 pence per kilowatt hour of electricity used, and

 a standing charge of £17.50 per 3-month period.

The next group of variables:

 int customerID;

 long newReading;

will hold data from the records which are being processed. The variables:

 long unitsUsed;

 double electricityCost;

 double total;

will be needed in the calculation of the bills.

private void btnPrintBillsActionPerformed(java.awt.event.ActionEvent evt) {

 double unitCost=14.1;

 double standingCharge=17.50;

 int customerID;
 String customerName;

 String address;

 int readingID;

 long oldReading;

 long newReading;

 long unitsUsed;

 double electricityCost;

 double total;

 double owing;

 DefaultListModel listModel = new DefaultListModel();

 String s;

 int customerPos=0;

 int readingPos=0;

 Boolean finished=false;

 }

A red error symbol will appear next to the DefaultListModel line but ignore this; we will correct the

problem shortly.

We can now plan a strategy for producing the electricity bills.

It was mentioned earlier that it was important to sort the master and transaction records into order

of customerID number. It is more efficient to carry out the batch processing using the sorted sets of

objects, rather than by repeatedly accessing the disc files directly. Processing can be carried out in

the fast RAM memory of the computer, rather than by many much slower disc access operations.

Let us consider the set of test data shown below. It is possible that we do not have transaction

records for every customer listed in the master file. For example, a customer may have closed their

account because they have moved away from the area or changed to a different supplier.

350 Java Programming for A-level Computer Science

Customer records in the master.dat file

Reading records in the transaction.dat file

We will load the first records from the Customer and Reading data sets. Both records apply to the

same customer, 183 Smith. The computer can then calculate the electricity bill and update the

Customer record by carrying out a sequence of steps:

 The amount of electricity (kWh) used is found by subtracting the old reading from the new

reading.

 The cost of the electricity is calculated by multiplying the amount used by the price per

kilowatt hour.

 The standing charge is added to find the total amount to be paid.

 The electricity bill is printed.

 The Customer record is updated by replacing the old meter reading with the new meter

reading value.

 The Customer record is updated by adding the new bill total to the previous amount owing.

The program then loads the next records from the Customer and Reading data sets.

Customer records in the master.dat file

Reading records in the transaction.dat file

744
Edwards

47566

28.40

678
Jones

23588

16.85

587
Thomas

73199

160.84

518
Sanderson

52197

102.44

429
Brown

38922

86.78

291
Morris

82566

45.70

284
Mitchell

45618

20.50

183
Smith

38221

56.92

678
Jones

24077

518
Sanderson

53612

429
Brown

40122

291
Morris

84518

183
Smith

40283

183
Smith

38221

56.92

183
Smith

40283

744
Edwards

47566

28.40

678
Jones

23588

16.85

587
Thomas

73199

160.84

518
Sanderson

52197

102.44

429
Brown

38922

86.78

291
Morris

82566

45.70

284
Mitchell

45618

20.50

678
Jones

24077

518
Sanderson

53612

429
Brown

40122

291
Morris

84518

284
Mitchell

45618

20.50

291
Morris

84518

 Chapter 12: Batch processing 351

In this case the Customer and Reading records do not refer to the same account. We have no

transaction record for customer 284 Mitchell.

The program will continue to load Customer records until a match is found with the Reading record

which is waiting to be processed.

The Customer record for 291 Morris has now been reached, so an electricity bill can be produced.

The process continues, loading the next Customer and Reading records.

In this case, the Customer and Reading records are both for 429 Brown, so a bill can be produced.

After further processing, the last Reading record is reached.

When the bill for 678 Jones has been produced, the batch process is complete. The final Customer

record, 744 Edwards, does not need to be updated.

744
Edwards

47566

28.40

678
Jones

23588

16.85

587
Thomas

73199

160.84

518
Sanderson

52197

102.44

429
Brown

38922

86.78

291
Morris

82566

45.70

678
Jones

24077

518
Sanderson

53612

429
Brown

40122

291
Morris

84518

291
Morris

82566

45.70

291
Morris

84518

744
Edwards

47566

28.40

678
Jones

23588

16.85

587
Thomas

73199

160.84

518
Sanderson

52197

102.44

429
Brown

38922

86.78

678
Jones

24077

518
Sanderson

53612

429
Brown

40122

429
Brown

38922

86.78

429
Brown

40122

744
Edwards

47566

28.40

678
Jones

23588

16.85

678
Jones

24077

678
Jones

23588

16.85

678
Jones

24077

352 Java Programming for A-level Computer Science

The algorithm we have used is known as a sequential update. An overall flowchart for the process

can be shown as:

start

get Reading record

Customer and

 Reading records have the

same customerID?

Customer record position = 0

another Reading

record?

calculate electricity used (kWh)

N

 Reading record position = 0

Y

calculate elctricity cost £

add standing charge

stop

N

get Customer record

Add 1 to Customer

record position

output the electricity bill

update Customer record with the

new meter reading

update Customer record with the

new amount owing

Y

Add 1 to Reading

record position

resave the updated

Customer records

 Chapter 12: Batch processing 353

Move to the beginning of the Produce Bills program listing. Add Java modules needed to use the List

component and for file handling. Locate the produceBills() method and add lines of code to load

the Customer and Reading records, ready to carry out the sequential update process.

package electricityPackage;

import javax.swing.DefaultListModel;

import java.io.File;

public class produceBills extends javax.swing.JFrame {

 public produceBills() {

 initComponents();

 DefaultListModel listModel = new DefaultListModel();

 lstOutput.setModel(listModel);

 Customer.loadCustomers();

 Reading.loadReadings();

 }

Return to the button-click method. We will add the main loop which will load each Reading record

and find the corresponding Customer record.

 String s;

 int customerPos=0;

 int readingPos=0;

 Boolean finished=false;

 customerID=Customer.customerObject[customerPos].getCustomerID();

 s=(Reading.readingObject[readingPos].getCustomer()).substring(0,3);

 readingID=Integer.parseInt(s);

 while(finished==false)

 {

 while(!(customerID==readingID))

 {

 customerPos++;

 customerID=Customer.customerObject[customerPos].getCustomerID();

 }

 listModel.addElement("CustomerID: "+customerID);

 readingPos++;

 if (readingPos<Reading.readingCount)

 {

 s=(Reading.readingObject[readingPos].getCustomer()).substring(0,3);

 readingID=Integer.parseInt(s);

 }

 else

 {

 finished=true;

 }

 listModel.addElement(" ");

 listModel.addElement("___________________________________ ");

 listModel.addElement(" ");

 }

 lstOutput.setModel(listModel);

 }

354 Java Programming for A-level Computer Science

Run the program. Select the Meter readings option and check that a series of records have been

entered and saved. Move now to the Produce bills page and click the 'Produce bills' button. An

entry should appear in the list box for each customer for whom we have saved a Reading record.

Any customers in the master file who do not appear in a Reading transaction record should not be

shown.

Close the program and return to the program code screen. We will now work on the invoice

calculations. Begin by adding lines of code to display the customer's name and town.

 while(finished==false)

 {

 while(!(customerID==readingID))

 {

 customerPos++;

 customerID=Customer.customerObject[customerPos].getCustomerID();

 }

 listModel.addElement("CustomerID: "+customerID);

 customerName=Customer.customerObject[customerPos].getCustomerName();

 listModel.addElement("Customer: "+customerName);

 address=Customer.customerObject[customerPos].getTown();

 listModel.addElement("Address: "+address);

 readingPos++;

 if (readingPos<Reading.readingCount)

 {

 s=(Reading.readingObject[readingPos].getCustomer()).substring(0,3);

 readingID=Integer.parseInt(s);

 }

 Chapter 12: Batch processing 355

Run the program. Select the Produce bills option, then click the 'Produce bills' button. Check that

customer names and towns are displayed correctly.

Close the program and return to the program code screen. Add lines of code to calculate and display

the units of electricity used.

 customerName=Customer.customerObject[customerPos].getCustomerName();

 listModel.addElement("Customer: "+customerName);

 address=Customer.customerObject[customerPos].getTown();

 listModel.addElement("Address: "+address);

 listModel.addElement(" ");

 oldReading =Customer.customerObject[customerPos].getOldReading();

 listModel.addElement("Previous meter reading: "+oldReading);

 newReading =Reading.readingObject[readingPos].getNewReading();

 listModel.addElement("New meter reading: "+newReading);

 unitsUsed=newReading-oldReading;

 listModel.addElement("Units of electricity used: "+unitsUsed+" kWh");

 readingPos++;

 if (readingPos<Reading.readingCount)

 {

 s=(Reading.readingObject[readingPos].getCustomer()).substring(0,3);

 readingID=Integer.parseInt(s);

 }

Run the program. Go to the Produce bills page and check that correct electricity usage is calculated.

356 Java Programming for A-level Computer Science

Close the program and return to the program code screen. We will now add lines of code to

calculate and display the electricity bills.

 unitsUsed=newReading-oldReading;

 listModel.addElement("Units of electricity used: "+unitsUsed+" kWh");

 listModel.addElement(" ");

 listModel.addElement("Price per kWh: "+unitCost+" pence");

 electricityCost=(unitCost*unitsUsed)/100;

 listModel.addElement("Electricity cost: £"+String.format("%.2f", electricityCost));

 listModel.addElement("Standing charge: £"+String.format("%.2f", standingCharge));

 listModel.addElement(" ");

 total=electricityCost+standingCharge;

 listModel.addElement("Invoice total: £"+String.format("%.2f", total));

 readingPos++;

 if (readingPos<Reading.readingCount)

 {

 s=(Reading.readingObject[readingPos].getCustomer()).substring(0,3);

 readingID=Integer.parseInt(s);

 }

Run the program. Go to the Produce bills page and check that a correct invoice is displayed for each

customer.

Close the program and return to the program code screen.

We will now update the Customer record with the new reading and amount owing. To do this, two

small methods need to be added to the Customer class. Use the tab above the editing screen to

move to the Customer.java page.

Locate the series of methods used to get the properties of Customer objects, such as:

 getOldReading();

Add the new methods after these, as shown below.

 Chapter 12: Batch processing 357

 public long getOldReading()

 {

 return oldReading;

 }

 public double getOwing()

 {

 return owing;

 }

 public void setOldReading(long fOldReading)

 {

 oldReading = fOldReading;

 }

 public void setOwing(double fOwing)

 {

 owing = fOwing;

 }

Return to the produceBills.java page, and locate the position in the button-click method where we

have been adding lines of code. Add the program code needed to update the meter reading and

amount owed by the customer.

 total=electricityCost+standingCharge;

 listModel.addElement("Invoice total: £"+String.format("%.2f", total));

 Customer.customerObject[customerPos].setOldReading(newReading);

 owing =Customer.customerObject[customerPos].getOwing();

 owing += total;

 String sOwing=String.format("%.2f", owing);

 Customer.customerObject[customerPos].setOwing(Double.parseDouble(sOwing));

 readingPos++;

 if (readingPos<Reading.readingCount)

 {

 s=(Reading.readingObject[readingPos].getCustomer()).substring(0,3);

 readingID=Integer.parseInt(s);

 }

Move now to the end of the button-click method. We need to carry out several tasks after all the

records have been processed and the loop ends:

 The updated Customer objects must be saved back into the master.dat file.

 The transaction file must be cleared, to remove the Reading records which have now been

processed. If this is not done, the customer could be charged more than once for the

electricity used!

Rather than completely delete the transaction.dat file, we will simply change its name to

archive.dat. This could then be kept by the electricity company in case of any enquiries at a

later date.

358 Java Programming for A-level Computer Science

Add the lines of code to the button-click method.

 listModel.addElement(" ");

 listModel.addElement("___________________________________ ");

 listModel.addElement(" ");

 }

 lstOutput.setModel(listModel);

 Customer.saveCustomers();

 File oldfile =new File("transaction.dat");

 File newfile =new File("archive.dat");

 oldfile.renameTo(newfile);

 Reading.readingCount=0;

 }

Run the program. Carry out a complete test of the system:

 Enter a series of customer records. CustomerID numbers should be 3 digits, and Previous

readings should be 5 digits in length. Check that the Customer records are stored in the

master.dat file and can be reloaded correctly.

 Go to the Meter readings page and enter new readings. Typical electricity usage for a

customer would be around 1,000 kilowatt hours for the 3-month period. You might omit

one or two customers, to test the algorithm when you carry out the sequential update.

Check that the Reading records are stored in the transaction.dat file and can be reloaded

correctly.

 Go to the Produce bills page and run the sequential update by clicking the 'Produce bills'

button. Check that the electricity usage and costs are calculated correctly.

 Return to the Customer records page. Check that the Previous reading field has been

updated correctly, and the new bill total has been added to the Amount owing field.

 Use Windows Explorer to open the electricity project folder. The transaction.dat file should

now have been renamed as archive.dat.

 Return to the Meter readings page, and no transactions should now be shown.

